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A Neurobiological Model of Visual Attention and Invariant Pattern
Recognition Based on Dynamic Routing of Information
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We present a biologically plausibie model of an attentional
mechanism for forming position- and sc¢ale-invariant repre-
sentations of objects in the visual world. The mode! relies
on a set of controi neurons to dynamicaily modify the syn-
aptic strengths of intracortical connections so that information
from a windowed region of primary visual cortex (V1) is
selectively routed to higher cortical areas. Local spatial re-
lationships (i.e., topography) within the attentional window
are preserved as information is routed through the cortex.
This enables attended objects to be represented in higher
cortical areas within an object-centered reference frame that
is position and scale invariant. We hypothesize that the pul-
vinar may provide the control signals for routing information
through the cortex. The dynamics of the control neurons are
governed by simple differential equations that couid be re-
alized by neurobiologically plausibie circuits. In preattentive
mode, the control neurons receive their input from a low-
level “saliency map” representing potentially interesting
regions of a scene. During the pattern recognition phase,
control neurons are driven by the interaction between top-
down (memory) and bottom-up {retinal input) sources. The
model respects key neurophysiclogical, neuroanatomical,
and psychophysical data relating to attention, and it makes
a variety of experimentally testabie predictions.

[Key words: visual attention, recognition, model, gating,
visual cortex, pulvinar, control] )
Of all the visual tasks humans can perform, pattern recognition
is arguably the most computationally difficuit. This can be at-
tributed primarily to two major factors. The first is that in order
to recognize a particular object, the brain must go through a
matching process to determine which of the countless objects
it has seen before best matches a particular object under scrutiny.
The second factor is that any particular object can appear at
different positions, sizes, and orientations on the retina, thus
giving rise to very different neural representations at early stages
of the visual system,
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Research on associative memories has provided some insight
as to how the problem of pattern matching can be solved by
neural networks (e.g., Hopfield, 1982; Kanerva, 1988). How-
ever, it is far less clear how the brain solves the second problem
to produce object representations that are invariant with respect
to the dramatic fluctuations that occur on the sensory inputs.
Qur goal here is to propose a neurobiclogical solution to this
problem that is detailed enough in its structure to generate useful
experimental predictions.

Qur basic proposal is similar to a psychological theory put
forth by Palmer(1983), in which it was proposed that the process
of attending to an object places it into a canonical, or object-
based, reference frame. It was suggested that the position and
size of the reference frame could be set by the position and size
of the object in the scene (assuming it was roughly segmented),
and that the orientation of the reference frame could be esti-
mated from relatively low-level cues, such as elongation or axis
of symmetry (see also Marr, 1982). The computational advan-
tage of such a system is obvious: only one or a few versions of
an object need to be stored in order for the object to be rec-
ognized later under different viewing conditions. The disadvan-
tage, of course, is that a scene containing multiple objects re-
quires a serial process to attend to one objectat a time. However,
psychophysical evidence suggests that the brain indeed employs
such a sequential strategy for pattern recognition (Bergen and
Julesz, 1983; Treisman, 1988).

Palmer made no atiempt to describe a neural mechanism for
transforming an object’s representation from one reference frame
to another, because his was primarily a psychological model.
Various other models have been proposed for transforming ref-
erence frames using neural circuitry (Pitts and McCulloch, 1947,
Hinton, 1981a; Hinton and Lang, 1985; von der Malsburg and
Bienenstock, 1986). Of these, only the proposal of Pitts and
McCulloch can be viewed truly as a neurobiological model.
However, their proposal--that the brain averages over all pos-
sible transformations of an object via a scanning process—can-
not be reconciled with our current understanding of the visual
cortex.

In this article we propose a neurobiclogical mechanism for
routing retinal information so that an object becomes repre-
sented within an object-based reference frame in higher cortical
areas. The mechanism is modified and expanded from an earlier
proposal {Anderson and Van Essen, 1987) for dynamically shift-
ing the alignment of neural input and output arrays without loss
of spatial relationships. The model presented here allows both
shifting and scaling between input and output arrays, and it also
provides a solution for controlling the shift and scale in an
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Shifting and rescaling the window of attention. The image within the window of attention in the retina is remapped onto an array of

sample nodes in an object-centered reference frame. g, In the simplest scheme, each “pixel™ in the object-centered reference frame represents image
luminance. b, More realistically, each pixel should presumably correspond to a feature vector that integrates over a somewhat larger spatial region

and represents orientation; depth, texture, and so on.

autonomous fashion. While the model is clearly an oversim-
plification in some respects, it respects key neuroanatomical
constraints and is consistent with neurophysiological and psy-
chophysical data relating to directed visual attention.

We begin with a description of the basic model—the dynamic
routing circuit—and its autonomous control. Subsequent sec-
tions describe the proposed neurobiological substrates and
mechanisms, predictions of the model, and a comparison with
other models that have been proposed for visual attention and
recognition.

The Model

The goal of our model is to provide a neurobiologically plausible
mechanism for shifting and rescaling the representation of an
object from its retinal reference frame into an object-centered
reference frame. Information in the retinal reference frame is
represented on a neural map {the topographic representation in
VY1), and we hypothesize that information in the object-based
reference frame is also represented on a neural map, as illus-
trated in Figure 1. This does not necessarily imply that only
*“pixels” can be routed into the high level areas, as drawn in
Figure la; each sampie node in the high level map could be
expanded into a feature vector representing various local image
properties, such as orientation, texture, and depth, that are made
explicit along the way (Fig. 14).

In order to map topographically an arbitrary section of the
input onto the output, the neurons in the output stage need to
have dynamic access to neurons in the input stage. In the brain,
this access must necessarily be obtained via the physical hard-
ware of axons and dendrites. Since these pathways are physically
fixed for the time scale of interest to us (<1 sec), there needs to
be a way of dynamically modifying their strengths. We propose
that the efficacy of transmission along these pathways is mod-
ulated by the activity of controf neurons whose primary re-

sponsibility is to dynamically route information through suc-
cessive stages of the cortical hierarchy.

A dynamic routing circuit

Figure 2a shows a simplified, one-dimensional dynamic routing
circuit (the next section discusses how this circuit can be scaled
up as a model of the visual cortex). It consists of an input layer
of 33 nodes, an output layer of five nodes, and two layers in
between. Additionally, a set of control units make multiplicative
contacts onto the feedforward pathways in order to change con-
nection strengths. This network has been constructed so that

1. the fan-in (number of inputs) on any node is the same—
in this case 3, )

2. the spacing between inputs doubles at each successive stage,
and

3. the number of nodes within a layer is such that the spread
of its total input field just covers the layer below.

This connection scheme has the attractive property of keeping
the fan-in on any node fixed to a relatively low number while
allowing the nodes in the output layer access to any part of the
input layer. This property will be important in scaling up the
model.

An example of how the weights might be set for different
positions and sizes of the window of attention is shown in Figure
2, b and ¢. When the window is at its smallest size (same res-
olution as the input stage, Fig. 25), the weights are set so as to
establish a one-to-one correspondence between nodes in the
output and the attended nodes in the input. When the window
is at a larger size, the weights must be set so that multiple inputs
converge onto a single output node, resulting in a lower-reso-
lution representation of the contents of the window of attention
on the output nodes. If the input representation were to contain
nodes tuned for different spatial frequencies, then the low-fre-
quency nodes would be primarily used when the window of
attention is large, whereas the high-frequency nodes would be
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Figure 2. A simple, one-dimensional dynamic routing circuit. 2, Connections are shown for the leftmost node 'in each layer. The connections for
the other nodes are the same, but merely shifted. ¥ denotes the number of nodes within each layer, and / denotes the layer number. A set of control
units-(not explicitly shown) provide the necessary signals for modulating connection strengths so that the image within the window of attention in
the input is mapped onto the output nodes. # and ¢, Some examples of how connection strengths would be set for different positions and sizes of
the window of attention. The gray level of cach connection denotes its strength. Fach node, [, essentially interpolates from the nodes below by
forming a linear weighted sum of its inputs:

1= 3w,

4

where w} denotes the strength of the connection from node j in level / to node / in level / + 1. If a gaussian is used as the interpolation function,
then wi Is given by :
_ ( ~ aid = d)?

2a? ?
where the parameters d,, «,, and o, denote the amount of translation, scaling, and blurring, respectively, in the transformation from level / to level
! + 1. The overall transiation, scaling, and blurring of the entire circuit (4, «, and o} is then given byd=d, + ald, + ad), @ = agya;, 0* =

a8 + af(e} + aded). Note that the lowest layers are best suited for small, fine-scale adjustments to the position and size of the attentional window,
while the upper layers are better suited for large, coarse-scale adjustments.

wi = expli

used when the window is small. Thus, much of the image

smoothing could be accomplished by using a set of hardwired ~ Control

filters, and then switching between these filters depending on
the size of the attentional window. _
The challenge in controlling the routing circuit lies in properly
setting the synaptic weights to vield the desired position and
size of the window of attention. Low levels of the circuit are
well suited for making fine adjustments in the position and scale
of the window of attention, whereas higher levels are best suited
for coarse control. In general, though, there are an infinite num-
ber of possible solutions in terms of the combinations of weights
that could achieve any particular input-output transformation.

Qur analysis of how information flow can be controiled is aided
by visualizing the routing circuit in “connection space,” as shown
in Figure 3a. This diagram shows the connection matrix for a -
simple one-dimensional routing circuit composed of twe lay-
ers—an input layer and an output layer. The horizontal axis
represents the nodes constituting the input layer of the network;
the vertical axis represents the nodes constituting the cutput
layer. An **x ™ at coordinate (J, {) in connection space denotes
that a physical connection exists from node j in the input to
node { in the output; the lack of an “x™ at (J, {) implies that
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no connection pathway exists between those nodes. We denote
the strength of the connection at {j, i} as w,. Noie that for a
two-dimensional routing circutit the connection matrix would
require four dimensions to display. We will use the one-dimen-
sional routing circuit for ease of illustration, but the concepts
developed here are readily extendible to two dimensions.

If the window of attention is to be of a certain position and
size, then the strength of each connection, w,, nesds to be set
appropriately. Figure 35 shows how this would look in connec-
tion space for an attentional window centered within the input
array with a scale factor of one (i.e., no magnification). The
stippled area represents those connections that are enabled; the
remaining connections are effectively disabled by mechanisms
discussed below. If the window of attention is to shift to the left
or right, then the band of enabled connections must translate
across the connection matrix. Changing the size of the window
ofattention corresponds to tilting the band of open connections,
as shown in Figure 3¢. Note that the band of open connections
must also be widened as 1t is tilted (corresponding to blur),
otherwise, aliasing would occur, leading to spurious patterns in
the output representation {Fig. 34).

By viewing the routing circuit in this way, it can be seen that
the problem of setting the position, size, and blur of the window
of attention amounts to one of generating the proper patterns
of active synapses in connection space. How this might be ac-
complished by the conirol units depends on how they are con-
nected to the feedforward synapses of the routing circuit. One
possibie scenario is for each control unit to modulate the strength
of a single physical connection {J, {), as illustrated in Figure 4a.
If a given control unit were “on,” then its corresponding con-
nection would be enabied, and if it were off then the connection
would be disabled. Nearly any remapping could then be accom-
plished by simply activating the control units corresponding to
the connections we wish {0 enable. However, this scheme would
require an enormous number of control units for a scaled-up
system. Since the set of remappings we wish to accomplish
(translations and scalings) is but a minute fraction of all possible
remappings, this scheme would arguably constitute a waste of
computational resources. Another possibility would be for the

control units to gate connections globally so that each unit is
responsible for effecting a single position and scale of the window
of attention, as shown in Figure 45. However, this scheme would
require a large fan-out for each control unit in a scaled-up sys-
tem. This could cause implementation difficulties and render
the circuit neurobiologically implausible.

Our proposed solution to the control problem minimizes both
the number of control units and the fan-out required by having
each control unit modulate a local group of synapses—or a
control block in connection space (Fig. 4¢). The probiem of
forming the desired patterns in connection space then becomes
an approximation problem, in which the control blocks form
the basis functions and the activations of the corresponding
control units form the coefficients. That is, the connection
strengths w; would be determined according 1o

w, = 2 6.0, i), (1)

where ¢, denotes the activity of the kth control unit, and the
function ¥ .(j, i) specifies the shape of the A4th control block in
connection space. In order to facilitate their ability to approx-
imate patterns in connection space, the control blocks should -
not have sharp boundaries; rather, they should have a gaussian-
like taper and overlap one another somewhat. Shaping the con-
trol blocks as in Figure 4¢ would be most optimal for realizing
translations, but could also be used to approximate scalings as
well, as shown in Figure 44. [t may well be possible to optimize
the shape of the control blocks using appropriate learning al-
gorithms, but the strategy illustrated here will suffice for our
immediate purposes.

Analternative way of expressing Equation 1 that will be useful
later is -

W, = E (a8 P (2)
%

where T, = ¥,(/, 7). In this sense, I';, denotes the weight with
which ¢, modulates the strength of synapse (j, {). Note that T,
= 0 for most combinations of /, j, and k, since each control
neuron modulates only a small fraction of the many possible
synapses {J, 7).
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Figure 4. Some possible control sce-
narios. 4, Each control unit modulates
the strength of a single connection. &,
Each control unit modulates the strength
of a large number of connections in or-
der to effect a global position and scale
of the window of attention. ¢, Each con-
trof unit modulates a local group of con-
nections, or a “control block.” & Ap-
proximating a desired position and scale
of the window of attention using controf
blocks.

Figure 3. A simple attentional strat-
egy for an autonomous visual systemn.
Objects are preattentively segmented via
low-pass filtering. Once an object has
been localized, the contents of the win-
dow of attention are fed 1o an associa-
tive memory for recognition. This pro-
cess is then repeated ad infinitum, or
until all interesting locations have been
attended.
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Autonomous control

Up to now we have described an essentially “open loop” model
of visual attention. That is, given a desired position and size
for the window of attention, one could manually set the activity
of the control units of the network so that the image within the
window is remapped onto the output units of the network. We
now describe how the network may be autonomously controlled
when provided only with visual input and no external com-
mands beyond the initial task specification.

Svstem objective. The purpose of attention is to focus the
neural resources for recognition on a specific region within a
scene. Thus, it would make sense for the attentional window to
be automatically guided to salient, or potentially informative,
areas of the visual input. Salient areas can often be defined on
the basis of relatively low-level cues—such as pop-out due to
motion, depth, texture, or color (e.g., Koch and Ullman, 1985;
Anderson et al., 1985). Here, we utilize a very simple measure
of salience based on luminance pop-out in which attention is
attracted to “blobs” in a low-pass-filtered version of a scene. (A
bilob may be defined simply as a contiguous cluster of activity
within an image.) In reality, attention can also be directed via
voluntary or cognitive influences, but these are not incorporated
into our present model.

We propose the following simple but useful strategy for an
autonomous visual system (see Fig. 5).

1. Form a low-pass-filtered version of the scene so that ob-
jects are blurred into biobs.

2. Select one of the blobs from the low-pass image—which-
ever is brightest or largest—and set the position and size of the
window of attention to match the position and size of the blob.

3. Feed the high-resolution contents of the window of atten-
tion to an associative memory for recognition.

4. If a match with one of the memories is close enough (by
some as yet unspecified criterion), then consider the object to
have been recognized; note its identity, location, and size in the
scene. If there is not a good match, then consider the object to
be unknown; either learn it or disregard it.

5. Now inhibit this part of the scene and go to step 2 (find
the next most salient blob).

The following three subsections describe the details for carrying
out steps 2, 3, and 5. Step 1 is trivial, whereas siep 4 is a high-
level problem beyond the scope of this article {cf. Carpenter and
Grossberg, 1987; Mumford, 1992).

Focusing attention on a blob. We begin by formulating a so-
tution for a simple one-dimensional routing circuit with one or
more gaussian blobs presented to the input units, as shown in
Figure 64. The values on the output units, f*, are computed
from the input units, I", via

Ipw= 23 wIr (3)
=2 2 alude (4)
i kS -

Note that Equation 4 is obtained by substituting Equation 2 "

into Equation 3. In this simple circuit the T, are set so that
each control unit ¢, corresponds to a global position of the
- window of attention, but in general this need not be the case.
In order to focus the window of attention on a blob in the
input, the network’s “goal” is to fill the output units with a blob
while maintaining a topographic correspondence between the
input and output (Fig. 3, step 2). Since the dynamic variables
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ro= [ itji=k

ik~ 10 otherwise

b.
\T><j>.<|/bl0b map
Figure 6.  a, A simple one-dimensional routing circuit with a gaussian

biob presented to the input units, Each contrel unit corresponds 10 a
different position of the window of attention: left (c,), center {¢,), or
right (¢,). For example, in order to accomplish the remapping shown,
the values on the control units should be ¢, = t and'¢, = ¢, = 0. b, The
same circuit with control circuitry added to autonomously focus the
window of attention on a blob in the input. Each control unit essentiatly
has a gaussian receptive field in the input layer. The control units then
compete among each other, via negatively weighted interconnections,
such that only the control unit corresponding to the strongest blob in
the input prevaiis. The combined leaky integrator and squashing func-
tion (Egs. 7, 8) are denoted by the amplifier symbol.

in this network are the ¢,, we need to formulate an equation
governing the dynamics of ¢, that accomplishes this objective.
We can accomplish the first part of the objective by letting ¢,
follow the gradient of an objective function, £, that provides
a measure of how well a blob is focused on the cutput units.
_One possible choice for £,,, is the correlation between the actual
values on the output units, fo~, and the desired blob shape, G.
That is,

Eyop = “2 I,

G, = exp[—(i — wp/o?]. (3)

The second part of the objective (maintaining topography) can
be accomplished by letting ¢, follow the gradient of a constraint
function, .. that favars valid control states—that is, those
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corresponding to translations or scalings of the input-output
transformation. One possible choice for £ ..., is
1
E congine = — ':'2' E o The, (6)
k!
where the constraint matrix 7% is chosen so as to couple the
control neurons appropriately. For the simple circuit of Figure

6a, each control neuron corresponds to a different position of
the window of attention, so we could define 7 as

. 11 k=4
. 0 k=12

This has the effect of punishing any state in which two or more
control units are active simultaneously, and thus forces a win-
ner-take-all solution. (The more general case using control blocks
15 described below.)

A dynamical equation for ¢, that simultaneously minimizes
both £, and E_ i 15 Biven by

G = 0'(“&)., 7

% + Tty =g 2 JE Gfrfjkljn + n8 2 Toc, (8)
where the constants 7 and 4 determine the rate of convergence
of the system, and the constant 8 determines the contribution
0f Eongraine Telative to E,,,,. A sigmoidal squashing function (o)
is used to limit ¢, to the interval [0, I]. (A derivation of Eq. 8
is given in the Appendix.)

A neural circuit for computing Equations 7 and 8 is shown
in Figure 6. The first term on the right of Equation 8 is com-
puted by correlating the gaussian, G, with a shifted version of

the input (the amount of shift depends on the index k). The

second term is computed by forming a weighted sum of the
activities on the other control units. These two results are then
summed together and passed through a leaky integrator and
squashing function to form the output of the control unit, ¢,.
Thus, the ¢; essentially derive their inputs directly from a “blob
map,” and then compete among each other so that the ¢, cor-
responding to the strongest blob prevails.

The circuit of Figure 6 could easily be modified to allow for
different sizes of the window of attention by adding another set
of control units for each desired size of the window of attention.
The control units corresponding to a large window of attention
would then derive their inputs from a coarse-grained (low-res-
olution) blob map, while control units corresponding to a smail
window of attention would derive their inputs from a fine-grained
(high-resolution) blob map. All of these units would then com-
pete with one another so that the window of attention is con-
strained to a single position and scale. (See example in the next
section.)

In a more biologically plausible scenario, the control units
would be configured into control blocks, like those shown in
Figure 4¢. In this case, Equation § states that the input to each
¢, would be computed by correlating the gaussian values, G,,
and the input values, /", that are “connected” via that control
unit (specified by I';,). Note that since the (7, are fixed, the term
Z, GT (Eq. 8) can essentially be considered a fixed weight.
Also, the constraint matrix, 7%, would need to be modified in
this case so that those control units corresponding to a common
translation or scale reinforce each other (7%, > 0), while control
units that are not part of the same transformation inhibit each
other (7§, < 0), as illustrated in Figure 7. This scheme has the

effect of introducing many local minima, however, and so the
control neurons need to be more tightly constrained in order 1o
converge on states that preserve local spatial relationships. We
have accomplished this by utilizing a coarse-to-fine control ar-
chitecture (B. Olshausen, unpublished observations). In this
scheme, routing is at first performed by a small number of
control neurons on a low-pass-filtered version of the image, and
this smaller set of control neurons is then used to constrain the
activities of the fine-grained control neurons routing the high-
resolution information.

Recognition. Once the window of attention has been focused
on a blob, the underlying high-resolution information can also
be fed through the routing circuit and into the input of an as-
sociative memory for recognition. However, it is likely that the
initial estimation of position and size made by routing the blob
would be only approximately correct, and this may cause prob-
lems for matching the high-resolution information. Thus, it would
be desirable to have the associative memory help adjust the
position and scale of the attentional window while it converges.
How, then, shall the associative memory be incorporated into
the control of the routing circuit?

If a Hopfield associative memory (Hopfield, 1984) is used for
recognition, then we can replace E,,,, with the associative mem-
ory’s “energy” function, E_.,, which is defined as

m=——22
1 i
+ZELFMW—EWW- ©)

In this equation the ¥, denote the output voltages on the as-
sociative memory neurons, T; denotes the connection strength
between neurons j and j, fimen denotes the inputs to the memory,
and g, is a squashing function such as tanh(x). Normally, the
only dynamic variables are the V;, which evolve by following
a monotonically increasing functlon g, of the gradient of the
energy. That is,

Vi=g(um (10

dur  —3E ..
Car = av.

=Sy -5+ i (1

i f

where C, and R, are constants that determine the integration
time constant of each neuron, The dynamics of Equations 10
and 11 can be implemented in simple, neural-like circuitry. Note
that the effect of minimizing £, ., is to simultaneously maximize
(1) the similarity between the neuron voltages, V,, and one of
the stored patterns superimposed in the 7, matrix (ﬁrst term of

Eewm), and (2) the similarity between the V. and the inputs
Frem (last term of £,,..). (The second term of E_ .. is the “leaky
integrator term,” which is unimportant for now. See Appendix.)

Since the inputs of the associative memory are to be obtained
directly from the outputs of the routing circuit (fmem = Jout), the
control neurons, c,, become additional dynamic variables hid-
den in the last term of E...... By letting the ¢, follow the gradient
of E .., along with the ¥,, the combined associative memory/
routing circuit should relax to the closest stored pattern and to
the correct position and size of the window of attention simui-
taneously.
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Figure 7. Control unit interactions when configured into control blocks.
The control unit corresponding to the block shown (stippled region)
should have excitatory connections (7%, > 0) to other control units whose
blocks form a consistent position and size of the window of attention—
that is, those blocks lying along the “+ directions. Inhibitory connec-
tions {7y, < () should be formed with control units whose blocks are
inconsistent with this one—that is, those along the *“—" directions. This
scheme is somewhat analogous to the way constraints are imposed in
the Marr/Poggio stereo algorithm (Marr and Poggio, 1976).

A dynamical equation for ¢, that simultaneously minimizes
both £ and E_......, i8 given by

¢ = o), ' (12)

du i
.Z’Ij + ' =g 2 E VIl + nB82 Ticy (13
i /

(A derivation is given in the Appendix.)

A neural circuit for computing Equations 12 and 13 is shown
in Figure 3. The first term on the right of Equation 13 is com-
puted by correlating the inputs, ", and outputs, V;, whose con-
nection pathways are influenced by control unit ¢, (specified by
T';). The other terms are computed as before. Thus, the main
qualitative difference between this circuit and the “blob finder”
(Fig. 6) is that the control is guided by the interaction between
top-down and bottom-up signals rather than purely bottom-up
Sources. _

In order to aveid local minima, it would be advantageous to
perform the combined process of pattern matching, shifting,
and scaling in a coarse-to-fine manner by utilizing information
at multiple scales (e.g., Witkin et al., 1987; Buhmann et al.,
1990). In this way, the low-pass information can be used initially
to send the memory into the right part of its search space; the
initial output of the associative memory can then be used to
better refine the position and scale of the window of attention
before allowing in higher-resolution information. A crude form
of such a coarse-to-fine strategy has been utilized in the com-
puter simulation below.

Shifting attention. Once an object has been recognized, the
window of attention should move on to another interesting part

of the scene. One way this could be accomplished would be for

the control units to be seli-inhibited through a delay. Thus, when
a group of control units are active for some time (long encugh
for recognition to take place} they should begin to shut off. This
will then allow other blobs or interesting items to compete suc-
cessfully for control of the window of attention. (see also Koch
and Ullman, 1985).

Computer simulation

Figure 9 shows the results of a computer simulation of a simple
attentional system for recognizing objects, based on the prin-
ciples elucidated above. The network begins in blob search mode,
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Associative memory

(other
control units)

Figure 8. An autonomous routing circuit for recogniticn. Each node
of the associative memory receives its external input from an output
node of the routing circuit. Hence, each node of the associative memory
has dynamic connections to many input nodes. The outputs of the
associative memory are then fed back and correlated with the inputs to
drive the control units. :

attempting to fill the output of the routing circuit with something
interesting. In Figure 94, the network has settled on the “A.”
since it has the greatest overall brightness in the input. (Since
the shapes used in this example are so compact and simple, we
have bypassed the step of prefiltering them into blobs. Thus,
during blob search, an object is low-pass filtered by the routing
circuit itself.) After settling on a potentially interesting object,
the network is switched into recognition mode and the output
of the routing circuit is fed to an associative memory. Two
patterns—“A” and “C”—have been previously stored in the
associative memory. The blurred version of the object initially
drives the inputs of the associative memory to begin the pattern
search. If the position of the window of attention is slightly off,

-the blurred version of the object is not affected much and still

sends the memory searching in the correct direction. As the
associative memory converges, control units compute the cor-
relation between memory outputs and retinal inputs and set
their activation correspondingly. This tends to maximize the
similarity between the outputs of the memory and the outputs
of the routing circuit, which will also refine the position of the
attentional window so that the high-resolution components can
be property matched (Fig. 9b). After allowing a fixed amount
of time for the associative memory to converge (another time
constant or two), the simulation states the position and pre-
sumed identity of the object. The current control state is then
self-inhibited and the network swiiches back into blob search
mode. This then puts the next interesting object at a competitive
advantage in attracting the window of attention so that it may
also be recognized (Fig. 9¢,d).

Summary of the model

By using control neurons to moduiate connection strengths dy-
namically, we have derived simple, neural-like circuits for shift-
ing and rescaling the information from an input array into a
higher level, object-centered reference frame. We assumed that
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Figure 9. Computer simulation of a simple attentional system for recognizing objects. The input to the routing circuit consists of a 22 x 22 array
of sample nodes and the output of the routing circuit isan 8 x § array of sample nodes. There are three sets of control units, each one corresponding
to a different size of the window of attention [small (8 x 8), medium (11x 11), and large {16 x 16)]. Each control neuron within a set corresponds to
a particular position of the window of attention. The Hopfield associative memory network {“Mem output™; see Fig_ 8) is composed of 64 units,
fully interconne;:ted and arranged into an 8 x 8 grid (i.e., one node for each output of the routing circuit). The dashed outline within the input array
denotes the position and size of the window of attention. @, The network begins in blob search mode, attempting to fill the output of the routing
circuit with something interesting. The blurring function of the routing circuit has been facilitated in this case by setting the constraint matrix so
that neighboring positions of the window of attention only weakly inhibit each other. The network has settled on the A since it has the greatest
overall brightness, b, The network is then switched into recognition mode and settles on the identification of the object. The position and size of
the object are encoded in the activities of the control neurons. Afier a fixed amount of time, the current control state is self-inkibited and the

network is switched back into blob search mode. ¢ and 4, The  is now at a competitive advantage in attracting the window of attention {¢) and

is subsequently recognized by the associative memory ().

a useful strategy for an autonomous visual system would be to
focus its attention on interesting regions within a scene and
aftempt to recognize whatever is there. From this basic as-
sumption, we derived equations for governing the dynamics of
the control neurons in both “preattentive™ (blob search) and
“attentive™ (recognition} modes. Although these circuits have
been greatly oversimplified for the purpose of illustration, the
basic principles can be extended to larger, scaled-up routing
circuits composed of multiple stages. We now turn to the issue
of how such circuits may possibly be implemented in the brain.

Neurobiological Substrates and Mechanisms

Figure 10a shows the major visual processing centers of the
primate brain. Information from the retino-geniculo-striate
pathway enters the visual cortex through area V1 in the occipital
lobe and proceeds through a hierarchy of visual areas that can
be subdivided into two major functional streams (Ungerleider
and Mishkin, 1982). The so-called “form™ pathway leads ven-
trally through V4 and inferotemporal cortex (IT) and is mainly
concerned with object identification, regardless of position or
size. The so-called “where” pathway leads dorsally into the
posterior parietal complex (PP), and seems to be concerned with
the locations and spatial relationships among objects, regardless
of their identity. The pulvinar, a subcortical nucleus of the thal-
amus, makes reciprocal connections with all of these cortical
areas (cf. Robinson and Petersen, 1992). The following sections
describe how we envision the dynamic routing circuit mapping
onto this collection of neural hardware.

Cortical areas

The “form’ pathway. Figure 10b shows the scaled-up routing
circuit that we propose as a model of attentional processing in
visual cortex. The different stages of the network correspond to
the major cortical areas in the “form” pathway. There are two

stages for VI: Vla corresponding to layer 4C, and V1b corre-
sponding ‘to superficial layers, since V1 has about twice the
density of neurons per unit surface area as the rest of neocortex
(O’Kusky and Colonnier, 1982), The remaining areas— V2, V4,
and IT—occupy one stage apiece. Fach node within a stage
represents, in the simplest sense, a sample of image luminance,
More realistically, each node would correspond to a feature
vector that is represented by the activity profile on a large group
{hundreds or thousands) of neurons in each visual area. For
example, in V1, each group would include cells selective for
various orientations, and spatial frequencies, in a small region
of visual space. It is impractical at this stage to include these
characteristics explicitly in our model, but we contend that these
details can safely be neglected for now without losing the pre-
dictive value of the model.

The input layer of the network (V1, layer 4C) contains ap-
proximatetly 300,000 samples of the retinal image (~ 3550 nodes
across in one dimension). This corresponds roughly with the
number of complete spatial samples delivered by the 10° optic
nerve fibers when one takes into account the fact that infor-
mation is divided into on- and off-channels, magno and parvo
streams, and different spectral bands (Van Essen and Anderson,
1990). The number of nodes in the other layers is dictated by
the rules specified in the previous section, given a fan-in of 1000
inputs per node {~30 inputs in one dimension). The sizes of
the first four layers scale roughly with the relative sizes of each
corresponding cortical area (V1 = 1120 mm?2, V2 = 1190 mm?,
V4 = 540 mm?; Felleman and Van Essen, 1991). IT is dispro-
portionately large, perhaps because it includes a complex of
multiple areas, some of which may be devoted to specialized
aspects of pattern recognition. Only a relatively small portion
of IT would be required to represent the actual contents of the
window of attention.

The fan-in for each node is about 1000 inputs, which is rea-
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sonable for cortical neurons (Cherniak, 1990; Douglas and Mar-
tin, 1990a). Note that without the multistage l‘uerarchy, a fan-
in of nearly 10¢ would be required for the neurons in IT, which
is several orders of magnitude beyond what is neurcanatomi-
cally plausible. Also, the resulting receptive field sizes {in the
all-connections-open state) are consistent with the observed in-
crease in the size of classical receptive fields as one proceeds
upward through the form pathway (Gattass et al., 1985).

The output of the network, which represents the contents of
the window of attention, contains approximately 1000 sample
nodes, or a window size of about 30 x 30 nodes. This then
corresponds to the spatial resolution of the window of attention
in our model. This estimate is roughly consistent with several
lines of psychophysical evidence, including studies of spatial
acuity, contrast sensitivity to gratings, and recognition (Camp-
bell, 1985; Van Essen et al., 1991). While we certainly allow for
some give and take on all of these numbers, we believe this
circuit contains the essential components to explain how infor-
mation can be routed from a shiftable and scalable window of
attention in V1 into IT while preserving spatial relationships.

In order to better visualize the operation of this circuit, we
have created a computer simulation of an “open loop™ version
of the model (i.e., manually controlled). Given a user-specified
position and size for the window of attention, the program ap-
propriately gates the feedforward connections at each stage in
the routing circuit so that only the contents of the window of
attention are routed to I'T. Figure 11 shows some example out-
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Figure 10. g, Major visual processing -
pathways of the primate brain. To avoid
clutter, many known connection path-
ways (e.g., V4=-PP) are not shown. b,
Proposed neurcanatomical substrates
for dynamic ronting. The label beside
each layer indicates the corresponding
cortical area and the number of sample
nodes in one dimension. The number
of sample nodes in two dimensions is
approximately the square of this num-
ber. At the bottom is shown a scale of
the approximate eccentricity of the in-
put nodes 1o the circuit. Connections
are shown for the center node in each
layer. (Individual nodes are indistin-
guishable here because of their density.)
Control signals originate from the pul-
vinar to effectively gate the feedforward
synapses.
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puts of the simulation when attention is focused on different
items within a scene. Note that regions outside the window of
attention in each cortical area are blurred, because there is no
need to gate the inputs selectively to a neuron if it is not being
attended to. The specific predictions generated by this circuit
will be discussed in the next section.

The "where” pathway. The posterior parietal cortex {PP) is
known to play an important role in attentional processes, Some
studies have reported that neurons in this area show an enhanced
response to attended targets within their receptive fields, even
when no eye movements are made (Bushneil et al., 1981). Others
have reported a threefold enhancement for unartended targets
when the animal is in an attentive state (Mountcastle et al,,
1981), or even a relative suppression for attended targets as
opposed to unatiended targets (Robinson etal., 1991; Steinmetz
et al., 1992). These latter results suggest that PP may be rep-
resenting the locations of potential attentional targets, as op-
posed to targets already being attended. This is also supported
by lesion studies that show that damage to the parietal lobe in-
humans hinders the ability of other objects in the field of view
to attract the attentional window away from the currently at-
tended location {Posner et al., 1984). Thus, we propose that PP
may act as a “saliency map” (e.g.,, Koch and Ullman, 1983),
analogous to the blob map utilized in the simple attentional
system described previously. These neurons would then drive
the control neurons that compete for control of the window of
attention.
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Computer simulation of a scaled-up, cortical dynamic roating circuit (no autonomous control). In both a and b, the bottom left image

shows a hypothetical retinal image, and the dashed outline within this image indicates the position and size of the window of attention. The image
above this shows the output of the routing circuit—the contents of the 30 x 30 window of attention. The four images io the right show four stages
of the routing circuit: V] (essentially a copy of the retina), ¥2, V4, and IT (the output). a, Attention is focused on the letter T at highest resolution
{i.e., connections between input and output are 1:1). b, Attention is focused on a larger region of the scene, and so resolution is sacrificed within
the window of attention. In each case, the receptive field of a hypothetical IT cell is shown (small in g and large in bY; in a, the receptive field of
a V4 cell outside the window of attention is also shown. A more realistic simulation utilizing a log-poiar lattice has also been constructed, but the
essential predictions of the model are more easily conveyed with this simpler version of the circuit. [The image used in this example was obtained

from Anstis (1974).]

This proposal contains at least two potential weaknesses, how-
ever. One possible drawback is that PP neurons typically have
relatively long latencies—~ 100 msec {Robinson et al, 1978,
Duhamel et al., 1992)—which is hard to reconcile with psycho-
physical data that imply that attention takes ~ 50 msec to move
to a new location in the visual field (Nakayama and Mackeben,
1989; Saarinen and Julesz, 1991). A possible solution to this
dilemma is that the superior coliiculus may supplement PP by
acting as a crude saliency map, but with a quicker response time
due to its direct retinal input (the latency of neurons in the
superficial layers of the superior colliculus is in the range of 40—
50 msec, Goldberg and Wurtz, 1972). The other drawback of
this proposal is that currently available anatomical data seem
to offer relatively few direct pathways by which PP could influ-
ence the control neurons for modulating information Aow in the
“form” pathway. However, there do exist indirect pathways,
such as through the superior colliculus, that may provide viable
alternatives (see below).

Subcortical areas

We hypothesize that the pulvinar complex plays an important
role in providing the control signals required for the routing
circuit. The pulvinar is reciprocally connected to all areas in the

form pathway, thus making it a plausible candidate for mod-
ulating information flow from V1 to IT. The pulvinar also re-
ceives a massive projection from the superior colliculus, which
is known to encode the direction of saccade targets and may
also be involved in setting up attentional targets {Posner and
Petersen, 1990; Gattass and Desimone, 1991, 1992), In addi-
tion, neurophysiological studies (Petersen et al., 1985, 1987),
lesion studies (Rafal and Posner, 1987; Bender, 1988; Desimone
et al., 1990), and positron emission tomography studies (La-
Berge and Buchsbaum, 1990; Corbetta et al., 1991) of the pul-
vinar suggest that it plays a role in engaging visual attention, or
filtering out unattended stimuli.

A subcortical nucleus such as the pulvinar also has the im-
portant property of being spatially localized while at the same
time being able to communicate with vast areas of the visual
cortex. The relative proximity of pulvinar neurons to each other’
would facilitate the competitive and cooperative interactions
among the control neurons, which are necessary to enforce the
constraint of maintaining spatial relationships within the atten-
tional window. Although it is not known whether such inter-
actions exist among pulvinar neurons, Ogren and Hendrickson
(1979) have reported the existence of interneurons with elab-
orate dendritic trees approaching 600 wm in diameter, which



could mediate communication amoeng pulvinar neurons. In ad-
dition, neuropharmacological experiments by Petersen et al.
(1987) have shown that enhancing or depressing inhibition with-
in the pulvinar can respectively slow down or speed up aiten-
tional shifts, which is suggestive of lateral inhibitory connections
within the pulvinar. An analogous function might also be served
by the reticular nucleus of the thalamus, which is an inhibitory

- structure through which pulvinar neurons project on their way
to the cortex. One study in Galzge (Conley and Diamond, 1990)
has shown that the pulvinar projects quite diffusely into the
reticular nucleus, which would be desirable for a winner-take-
all type circuit.

To first order, it would make sense for each stage of the routing
circuit to have its own set of control neurons. The anatomical
subdivisions of the pulvinar correspond roughly with this scheme,
insofar as the inferior pulvinar projects mainly to lower areas
(V1, V2) and the lateral and medial pulvinar to higher areas
(V4, IT), The control neurons for the lower stages would need
to compete only locally, since these stages would be more con-
cerned with making local adjustments in the position and scale
of the window of attention. Control neurons at the highest stage
would need to compete globally, since these stages are setting
the position and scale of the window of attention for the entire
scene.

The number of control neurons that would be required for
the routing circuit depends on how many cortical synapses are
modified by each control neuron. Theoretically, the minimal
number of control neurons is given by

# of control neurons

_ (# of output nodes) x (fan-in per node)
(# of synapses per control block)

Assuming that the control blocks comprise approximately 1000
synapses each, then the number of control neurons required for
each stage of the routing circuit would be about the same as the
number of output nodes of each stage (since the fan-in per node
is also about 1000). Thus, ~250,000 control neurons would be
required for the first stage, ~ 175,000 for the second stage, and
so on, which is well within the estimated number of neurons in
the pulvinar, (The pulvinar has somewhat lower neuronal den-
sity than the LGN, but also is several times larger. Since the
LGN contains ~ 10* projection neurons, this would constitute
a reasonable lower bound for the number of neurons in the
pulvinar.) However, each output node in the circuit actually
corresponds to a muititude of neurons representing various fea-
tures, such as orientation, spatial frequency, and so on. Thus,
each pulvinar control neuron would require an additional fan-
out for controlling the inputs to all the neurons corresponding
to an output node. Since there may be hundreds of neurons for
each node, the pulvinar neurons would need to amplify their
fan-out via other neurons (a fan-out of 100,000 for pulvinar
neurons is-probably too large to be plausible). This could pos-
sibly be subserved by neurons residing in the deeper layers (5
and 6) of the cortex (see Van Essen and Anderson, 1990). Con-
trol would then be implemented in a hierarchical fashion, with
each pulvinar neuron specifying how information is routed be-
tween nodes, and cortical control neurons specifying how in-
formation is routed between the neurons belonging to each node.

The simple autonomous routing circuits of Figures 6 and 8
suggest an interesting role for the projections to the pulvinar
from the parietal and temporal lobes and the superior colliculus.
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During “blob search,” the pulvinar might be influenced pri-
marily from a saliency map of targets in the parietal lobe or
superior colliculus. Puring recognition, top-down influences from
IT might then take over to refine the position and size of the
attentional window for object matching. The pulvinar would
then alternate between these two modes of input as attention
moves from one object to the next. A potential weakness of this
proposal, however, is that the anatomical evidence suggests that
PP and IT project mostly to segregated portions of the pulvinar

A{Baleydier and Morel, 1992). On the other hand, there is some

overlap near the border between the lateral and medial portions
of the pulvinar where these two streams intermingle. As noted
already, parietal cortex may also communicate with IT-recipient
pulvinar indirectly through the superior colliculus.

An alternative means by which IT could supply top-down
guidance to the control neurons would be via corticocortical
feedback pathways. Under this scenario, control neurons within
the cortex would be driven by feedback signals emanating from
IT once the pulvinar neurons have roughly set the position and
size of the window of attention. The pulvinar’s role would thus
be analogous to that of a general in an army--coarsely specifying
a plan of action, which the cortical control neurons refine into
a concise remapping under top-down, or object-based. guidance
from IT.

Gating mechanisms

Neural gating mechanisms are believed to play an important
role in many aspects of nervous system functicn. For example,
the extent to which a noxious stimulus is perceived as painful
varies greatly as a function of one’s emotional state and other
external factors, This is subserved at least in part by gating
mechanisms in the spinal cord, where descending fibers from
the raphe nuclei form part of a control system that modulates
pain transmission via presynaptic inhibition in the dorsal horn
(Fields and Basbaum, 1978). Gating mechanisms are also thought
to play an important role in sensorimotor coordination; for
example, there are many instances in which spinal cord central
pattern generators gate sensory inputs according to the phase of
the movement cycle in which the input occurs (Siflar, 1991). A
somewhat different form of gating seems to take place in the
LGN, where thalamic relay cells exhibit two distinct response
modes: a relay mode, in which cells tend to replicate retinal
input more or less faithfully, and a non-relay burst mode, in
which cells burst in a rhythmic pattern that bears little resem-
blance to the retinal input (Sherman and Koch, 1986). In this
instance, the reticular nucleus of the thalamus is thought to be
the source of the signal that switches the LGN into the nonrelay
burst mode.

Although there is as vet no explicit evidence for gating mech-
anisms in the visual cortex, there are several possible biophysical
mechanisms that would allow control neurons to gate synapses
along the V1-IT pathway. Presynaptic inhibition, as in the spi-
nal cord, would probably provide the most localized gating ef-
fect. However, to date there exists no morphological evidence
for this type of synapse in the visual cortex (Berman et al., 1992),
Postsynaptically, a control neuron could decrease or possibly
nullify the efficacy of a corticocortical synapse via shunting in-
hibition. Evidence for this type of mechanism playing a role in
orientation or direction tuning is mixed, with some for (Pei et
al., 1992; Volgushev et al., 1992) and some against (Douglas et
al., [988). Another possible postsynaptic gating mechanism could
be realized via the combined voltage- and ligand-gated NMDA
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receptor channel, which has been shown to play an important
role in normal visual function (Miller et al., 198%; Nelson and
Sur, 1992). In this case, a control neuron could effectively boost
the gain of a corticocortical synapse by locally depolarizing the
membrane in the vicinity of the synapse. Also, there exist volt-
age-gated Ca’* channels in dendrites (Llinas, 1988) that could
provide nonlinear coupling between inputs. Evidence for non-
linear interactions of this type have been reported for synaptic
inputs into layer 1 of neocortex (Cauller and Connors, 1992,
All of these mechanisms, and possibly others, offer a mutltipli-
cative-type effect that is suitable for gating information flow
through the cortex (see also Koch and Poggic, 1992).

Under an inhibitory gating scheme scheme, such as shunting
or presynaptic inhibition, the control neurons would need to
become active only when attention is actively engaged on an
object. The finer the resolution desired within the window of
attention, the more the control neurons would need to be en-
gaged. The absence of any activity on the control neurons would
correspond to all connections being open (the inattentive state),
in which case neurons in IT would exhibit the very large recep-
tive fields observed in anesthetized or inattentive animals (Gross
et al,, 1972; Desimone et al., 1984).

Under an excitatory gating scheme, such as via NMDA re-
ceptors, one would need to hypothesize the existence of a gain
control mechanism working in concert with the contrel neurons.
When no control signals are provided, cortical input would be
rather weak, and the firing threshold of pyramidal cells should
be lowered to let all information through. When control signals
are present to boost the gain of individual synapses, however,
the threshold should be raised. This way, the unboosted syn-
apses will be essentially suppressed to a relatively low strength.
Threshold adjustment could perhaps be subserved by chandelier
cells, which make strong inhibitory connections exclusively onto
the axon initial segment of pyramidal cells (Douglas and Martin,
1990b). Evidence that gain control mechanisms indeed exist in
visual cortex has been established in previcus physiological
studies (Ohzawa et al.,, 1982; Pettet and Gilbert, 1992).

From a computational viewpoint, gating of inputs within in-
dividual dendrites provides a much higher degree of flexibility
than would merely gating the outputs of pyramidal cells. Since
the output of a pyramidal cell may branch 1o several cortical
areas and make synaptic connections to a multitude of neurons,
any modulation of the cell’s output will simply be duplicated
at all these subsequent input points. Gating inputs within the
dendrites, on the other hand, allows the nonlinear computation
of many intermediate results (Z, ¢.T L) within the postsynaptic
membrane, which can then be summed together within a single
cell. This results in a computational structure that is orders of
magnitude richer (Mel, 1992), and provides a higher degree of
flexibility in sculpting patterns in connection space (see Fig. 4).
We believe the demonstrable computational advantage of den-
dritic gating mechanisms for visual processing motivates the
need.to specifically look for such mechanisms experimentally.
(See also Desimone, 1992, for a discussion of output vs input
galing mechanisms.)

Discussion

Because of its detailed neurobiological correlates, the routing
circuit model makes a number of interesting predictions that
can be tested experimentally. In this section we discuss these
predictions, as well as the differences between our model and
other network models that have been proposed for visual at-

tention and invariant pattern recognition. We also describe some
generalizations of the model, and briefly outline the unresclved
1ssues that remain as topics for future research.

Predictions

Neurophysiology. The most obvious prediction of the dynamic
routing circuit model is that the receptive fields of cortical neu-
rons should change their position or size as attention is shifted
orrescaled. This effect should be especially pronounced in higher
cortical areas. Some support for this prediction comes from the
neurophysiological findings of Moran and Desimone (1985) in
areas V4 and IT of primate visual cortex. As schematized in
Figure 12, they found that if two bar-shaped stimuli were placed
within the classical receptive field (CRF) of a V4 cell, and the
animal was trained to attend to only one of them, then the cell’s
response to the unatiended stimulus was substantially attenu-
ated. This 1s what one would expect from our routing circuit,
since the pathways between the cell and the unattended stimulus
would be effectively disabled in this case (Fig. 12¢). They also
found that the V4 cell responded to an unattended stimulus
anywhere within its CRF when the animal attended a stimulus
outside the CRF. This effect is also predicted by the model,
because once a V4 cell lies outside the region of interest in V4
it no longer needs to restrict its inputs {Fig. 124). Indeed, other
targets of V4, such as those in PP, would presumably be inter-
ested in the information from regions lying outside of the at-
tentional beam.

While Moran and Desimone’s findings offer some support for
attentional modulation effects predicted by the model, they did
not attempt to map receplive fields under different attentional
conditions with any precision; thus, their results do not address
the more specific effects predicted by the model. One would
expect a cortical receptive field to shift as the attentional window
1s translated, and to expand or shrink as the attentional window
is made larger or smaller, respectively. We predict that the op-
timal spatial frequency for the cell should change as weil, shifting
to high spatial frequency for a small window of attention, and
to low spatial frequency for a large window of atiention. These
predictions can be tested by giving the animal a task that forces
it to attend to a region of & specific size and location, and then
probing the receptive field with a neutral (behaviorally irreie-
vant) stimulus to measure its extent, Preliminary results using
such a paradigm suggest that the receptive fields of V4 cells do
indeed translate toward attentional foci in or near the classical
receptive field (Connor et al., 1993). In its present simpie form,
our model predicts that V4 receptive fields couid become up to
100-fold smaller than the CRF (in one dimension) when atten-
tion is at highest resolution. While this extreme is unlikely, given
the evidence for complex receptive fields in V4 (Desimone and
Schein, 1987; Gallant et al,, 1993), there remains a pressing
need to resolve empirically the extent to which cortical receptive
fields can dynamically change position and size.

Another physiological prediction of the model is that lesions

to the pulvinar, the hypothesized control center, should dra- -

matically degrade attention and pattern recognition abilities.
While there is substantial evidence linking pulvinar lesions to
attentional defects (Rafal and Posner, 1987; Bender, 1988; De-
simone et al., 1990), some pattern recognition abilities appear
to be relatively unimpaired by pulvinar lesions (Mishkin, 1972:
Chalupa et al., 1976; Nagel-Leiby et al., 1984; Bender and But-
ter, 1987). One possible reason for the apparent sparing of pat-
tern recognition is that the tasks used in these studies generally
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Figure 12. The dvnamic routing circuit interpretation of the Moran and Desimone (1985) experiment. The node in [ayer V4 indicates the cell
under scrutiny. The hatched region indicates those connections 1o the cell that are enabled; the others are disabled. The bounds of the window of
attention in each area are shown by the stippled lines. a, In the nonattentive state, all connections will be open and the effective stimulus can excite
the cell anywhere within its CRF. b, When attending to the effective stimuius, the cell’s response should be unaltered since the neural pathways to
the stimulus are still open, ¢, When attending to the ineffective stimulus, the cell’s response should decrease substantially since the neural pathways
to the effective stimulus are gated out. d, When attending outside the cel’s CRF, there is no need to gate the cell’s inputs since it is no longer taking

part in the process of routing information within the window of attention,

were very simple, such as distinguishing a large “N” from a “Z”"
{Chalupa et al., 1976). It-is concetvable that such a task could
be carried out even when the fidelity of the remapping process
has been compromised. A more rigorous test using stimuli that
demand the full spatial resolution capacity of the window of
attention would be better suited to test the effect of pulvinar
lesions on recognition abilities, Pulvinar lesions would afso be
expected to diminish the result found by Moran and Desimone
(1985), and it would be interesting to repeat this experiment
while reversibly deactivating the pulvinar.

The physiological responses to be expected from pulvinar
neurons depend on how they are configured to gate information
flow in the cortex, In an inhibitory gating scheme, one would
expect enhanced responses from pulvinar neurons projecting to
areas of the cortex within and immediately surrounding the
attentional beam, and little or no response from pulvinar neu-
rons projecting to those areas of the cortex substantially outside
the attentional beam. In an excitatory gating scheme, one would
expect to find enhanced responses from pulvinar neurons pro-
jecting to areas of the cortex within the attentional beam only.
Petersen et al. {1985} have reported such an enhancement effect
for neurons in the dorsomedial portion of the pulvinar (which

is connected with PP), but not in the inferior or lateral portion
(which is connected to V1-IT). The lack of enhancement in
these latter areas may be due to the fact that the task used in
this experiment was very simple (detecting the dimming of a
spot of light). Again, a more appropriate task would be one that
fully taxes the capacity of the attentional window, as this would
require the greatest participation from the control neurons in
gating out irrelevant information.

Neuroanatomy. The routing circuit model predicts that the
size of the cortical region from which a cell receives its input
should increase by about a factor of 2 at each stage in the
hierarchy of visual areas in the form pathway. While there is
some evidence in support of this prediction —for example, con-
nections between V4 and IT are more diffuse than connections
between V1 and V2 (Van Essen et al., 1986, 1990; DeYoe and
Sisola, 1991}--more accurate and higher resolution data are
needed in order to confirm or contradict this prediction. Also,
since the distribution of connections in the routing circuit be-
comes more patchy at higher levels (see Fig. 105}, one would
expect a retrograde injection in V4 or IT to result in a patchy
distribution in the lower level, which indeed has been reported
{(Felleman and McClendon, 1991; Felleman et al., 1992).
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Another anatomical prediction of the model! is that the ter-
minations of pulvinar—cortical projections should be suitably
positioned for effective modulation of intercortical synaptic
strengths. The pulvinar is known to project to the output layers
(2, 3) of VI and to both the input and output layers (3, 4) of
extrastriate areas V2, V4, and IT {Benevento and Rezak, 1976;
Ogren and Hendrickson, 1977; Rezak and Benevento, 1979).
These synapses are suspected to be excitatory since they are of
the asymmetric type (in layers 1 and 2; Rezak and Benevento,
1979). However, it is not known whether the pulvinar afferents
make synapses with inhibitory interneurons or directly onto the
dendrites of pyramidal cells.

Finally, the model predicts that there should exist lateral in-
hibitory and excitatory connections within the pulvinar in order
to enforce the constraint of preserving spatial relationships with-
in the window ofattention. This prediction is partiaily supported
by the existence of interneurons within the pulvinar (Ogren and
Hendrickson, 1979), but it remains to be seen if the axons of
projection neurons have collaterals that spread horizontally
within the pulvinar, or to what extent the reticular nucleus of
the thalamus might subserve this role.

" Psychophysics. The number of sample nodes in the top layer
of our routing circuit is predicated on the notion that the spatial
resolution of the window of attention is limited to the equivalent
of about 30 x 30 pixels. This prediction shares a basic similarity
to Nakayama’s (1991) “iconic bottleneck™ theory, although his
estimate {~ 100 pixels total) is somewhat lower than ours. The
30 x 30 estimate is roughly consistent with several lines of
psychophysical evidence, including studies of spatial acuity,
contrast sensitivity to gratings, and pattern recognition (Camtp-
bell, 1985; Yan Essen et al., 1991). However, one problem with
this analysis is that the critical data were derived from experi-
ments in which visual attention was not explicitly controlled.
In particular, most of the experiments had display times long
enough to permit multiple shifts of attention (although we doubt
that this would have been a major contaminating factor in most
cases).

On the other hand, those experiments that have been directed
at studying the amount of “resources™ allocated during visual
attention have largely ignored the issue of spatial resoiution.
For example, various studies have reported evidence for a “zoom
lens” model of attention in which the density of processing
resources decreases as the size of the attentional window in-
creases (Eriksen and St. James, 1986; Shulman and Wilson,
1987). However, these experiments were not designed to mea-
sure spatial resolution explicitly. Also, Verghese and Pelli {1992)
have attempted to measure the information capacity of the win-
dow of attention. which they conclude fo have an upper bound
of about 50 bits. However, they studied only two tasks—de-
tecting a nonmoving target among moving distractors, or de-
tecting a nonflashing square among flashing squares—neither of
which is well suited for measuring spatial resolution. A more
appropriate experiment might be one that tested pattern dis-
.crimination ability as a function of the position, size, and res-
olution of an object. In this case, our present model predicts
-that performance would drop off sharply once the spatial fre-
quency content of the stimulus exceeded approximately 15 x
15 cycles per object.

The model also makes some interesting predictions with re-
gard to the dynamics of visual attention. For example, once a
location has been attended to in the visual field it should be
difficult to stay there or immediately revisit the site, because

the control neurons corresponding to that part of the visual
field would be transiently inhibited from firing. There is some
evidence for such a mechanism, in that involuntary attentional
fixations tend to be transient (Nakayama and Mackeben, 1989)
and appear to be inhibited from return (Posner and Cohen,
1584). The amount of time that it takes the attentional window
to shift from one location to another would be expected to be
roughly independent of the distance between locations. Unlike
eye saccades, there is no obvious reason why the control neurons
should sequence through all intervening positions of the atten-
tional window. Rather, moving the locus of attention would
require merely inhibiting the current control state and activating
a new one. This prediction is most consistent with Remington
and Pierce’s (1984) study showing time-invariant shifts of visual
attention, although other studies {e.g., Tsal, 1983) are in dis-
agreement {but see Eriksen and Murphy, 1987, for a critical
commentary on these and other studies). On the other hand, if
attention were actually to track a stimulus, then one would
indeed expect a smooth transition of activity across the control
neurons. It is interesting to note that Cavanagh {1992) has dis-
covered some forms of visual stimuli that produce a motion
percept only when tracked with attention. We speculate that the
progression of activity across the control neurons is what un-
derlies one’s perception of motion in such cases.

Comparison with other models

Control versus syrchronicity. A number of other models of visual
attention and pattern recognition have been proposed that rely
on the synchronous firing of neurons in order to change con-
nection strengths (e.g., Crick, 1984; von der Malisburg and Bi-
enenstock, 1986; Crick and Koch, 1990). We contend that a key
disadvantage of such approaches is that information about the
effective connection state at any one point in time s not ex-
plicitly encoded anywhere in the system. In our model, this
information is encoded explicitly in the activities of the control
neurons, which then allows it to be utilized advantageously in
a number of ways.

One way that information about connectivity can be utilized
is in constraining the active connections between retinal- and
object-based reference frames to be in accordance with a giobal
shift and scale transformation. This constraint is incorporated
in our model via the competitive and cooperative interactions
among the control neurons (Eq. 6). During object recognition,
this constraint drastically reduces the number of degrees of free-
dom in matching points between the retinal and object-centered
reference frames, because once a few point-to-peint correspon-
dences have been established, the number of potential matches
between other pairs of points is greatly reduced. In machine
vision, this is known as the viewpoint consistency constraint, and
it has proved to be a powerful computational strategy for object
recognition systems (Hinton, 1981b; Lowe, 1987).

Another advantage of having knowledge of the active con-
nection state readily available is that the ensembie of control
neurcns together form a neural code for the current position
and size of the window of attention. Therefore, information
about the position and size of an object can be obtained by
simply reading out the state of the control neurons. In addition,
it would also be possible for the control neurons to warp the
reference frame transformation in order to form object repre-
sentations that are invariant to distortion (g.g., handwritten
digits), in which case information about the particular shape of
the object (e.g., its slant or style} could also be preserved. Note



that such mformation is typically lost in networks that utilize
feature hierarchies of complex cells (Fukushima, 1980, 1987;
LeCun et al., 1990) or Fourier transforms (e.g., Pollen et al,,
1971, Cavanagh 1978, 1985) for forming position-, scale-, and/
or distortion-invariant representations.

Our model can also explain how attention may be d.u'ected

“at will,” or by other modalities, to the extent that those areas
ofthe brain having access to the control aeurons (such as parietal
cortex) can directly influence where attention is directed. This
also provides a convenient format for mediating the access to
control among various competing demands. While such forms
of top-down control are not impossible to incorporate in modeis
based on synchronicity-gated conmnections, its implementation
would seem to be less straightforward.

Control-based network models. A number of other network
models of attention and recognition have also utilized the con-
cept of control neurons for directing information flow. Niebur
et al. (1993), Desimone (1992), LaBerge (1990, 1992), Ahmad
(1992), and Posner et al. (1988), among others, have proposed
models that involve the pulvinar as a control site for routing
information from a select portion of the visual scene. In addi-
tion, Tsotsos {1991) and Mozer and Behrmann (1992) have
proposed somewhat more abstract connectionist models that
utilize gating units to control attention. However, none of these
models preserve spatial relationships within the window of at-
tention, which we consider to be a critical component of the
routing process.

Hinton and Lang (1985) and Sandon (1990, 1988) have pro-
posed control-based models that do preserve spatial relation-
ships within the window of attention and share the same basic
principle as the model presented here—that is, remapping object
representations from retinal into object-centered reference frames
via a third set of units (equivalent to control in our model).
Although these models attempt to explain various psychophys-
ical data, they do not contain the necessary level of neurobiol-
ogical detail to give them strongly predictive value in biology.

Postma et al. (1992) have proposed a neural model based
~ upon the original shifter circuit proposal (Anderson and Van
Essen, 1987) to account for translational invariance in visual
object priming (Biederman and Cooper, 1992). This model shares
many similarities to the model presented here, including top-
down (template-driven) control, but it differs in the specifics
of the control structure. Most notably, Postma et al. have pro-
posed an interesting solution to controlling a hierarchical shifter
circuit based on a series of stages of local, winner-take-all cir-
Cuits.

Control as a general computational strategy

Besides being advantageous for the control of visual attention,
we believe that the strategy of utilizing explicit control neurons
may be a useful computational principle employed by the brain
in other domains as well. A different perspective of dynamic
control is illustrated in Figure 13. In most neural network mod-
els, the output of a neuron is computed by forming the inner
product of a weight vector, W, with the inputs to the neuron,
and then passing the result through a nonlinearity. The weight
vector may change on a slow time scale in order to optimize
the network for performing a certain task, but typically W re-
mains fixed over the relatively short time in which the task is
actually performed (e.g., <1 sec). By having conirol neurons
available to modify % on a short time scale, the computation
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Control

.

W

Figure 13. A more general way of viewing control. A weight vector
with two components, w, and w,, is shown. Control neurons ¢, and ¢,
modulate each of these components, respectively, to change the weight
vector dynamically. Thus, the weight vector may be able to occupy any
region within the circular outline in order to optimize the network for
the particular input and task at hand.

being carried out by the network can be dynamicaily reconfig-
ured and optimized for the particular task at hand. This added
degree of flexibility reduces the neural resources required for
solving a complicated task, since it is no longer necessary to
have dedicated, specialized networks with fixed connections to
deal with each variation of a task (Van Essen et al., 1993).

Unresolved issues

The dynamic routing circuit as described in this article is in-
tended as a “zero-th order” model, and as such many details
have been neglected or oversimplified. Here we outline some
of the more important unresolved issues that remain as topics
for future research.

Features instead of pixels. As already noted, one key neuro- .
biclogical characteristic neglected in the present model is the
known preponderance of feature-selective cells in the visual
cortex. V1, for example, is known to contain cells tuned for
various orientations and spatial frequencies, and V2 and V4
contain cells that seem 10 be tuned for more complex stimuli
(von der Heydt and Peterhans, 1989, Gallant et al., 1993). How
does this affect the routing process? One possible strategy, as
mentioned earlier, would be to route information primarily from
low-spatial-frequency cells when the window of attention is large,
and from high-spatial-frequency ceils when the window of at-
tention is small. More generally, dynamic routing need not nec-
essarily be restricted to the space domain, but could work across
feature domains as well.

Feedback pathways. We have described how information can
be routed in the feedforward pathways, but we have more or
less ignored the feedback pathways that are known to exist in
abundance in the visual cortex. Mumford (1992) has sketched
a theory proposing that the role of these feedback pathways is
to relay the interpretations of higher cortical areas to lower
cortical areas in order to verify the high-level interpretation of
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a scene. Such a mechanism would obviously be of use for step
4 of our proposed strategy for an autonomous visual system.
Under this scenanio, it would be necessary to route information
flow within the feedback pathways as well to ensure that the
high-level interpretation is matched against the appropriate re-
gion within the cortical area below (i.e., within the window of
attention). Another possible role for information flow in the
feedback pathways may be to refine the tuning characteristics
of lower-level cortical cells based upon the interpretations made
in higher cortical areas (see, e.g., Tsotsos, 1991).

Pop-out in multiple dimensions. In the simple autonomous
visual system we have proposed, “blobs” were the only salient
features used to attract the window of attention. How might
other salient features —such as pop-out due to motion or texture
gradients—be incorporated into the preattentive system? How
would the demands among these different saliencies be medi-
ated?

Integration across multiple attentional shifis. How are the
various “‘snapshots” obtained by the window of attention in-
corporated to form an overall percept of a scene? One possibility,
as outlined by Hinton (19811, is that a compact representation
of each object is maintained in the form of the activities on a
set of neurons within a “scene buffer.” Each attentional fixation
would then write its contents into a different part of the buffer,

depending on the position and size of the attentional window -

as well as the orientation of the eyes, head, and body with respect
to the environment (see also Baron, 1987).

Rotation and warp. Qur model accounts for how reference
frames can be shifted and rescaled, but it does not address
rotation and other distortions (e.g., handwritten characters). The
ability to rotate or warp reference frames could probably be
included in the model without much difficulty, since this would
just involve another form of routing. Moreover, for foveated
objects the log-polar representation in V1 wouid convert rota-
tions into approximate linear shifts on the cortex (Schwartz,
1980), which may facilitate the routing.

Three-dimensional objects. How are three-dimensional ob-
jects represented neurally, and how is information in the retinal
reference frame transformed to match this representation? One
possibility, as advanced by Poggio and Edelman (1990), is that
three-dimensional objects are actually represented by a few char-
acteristic two-dimensional views, and that a match to the retinal
representation is achieved by interpolating among these views,
In this case, the routing circuit would be required to reposition
and rescale the object properly so that the interpolation could
take place.

Learning. Although the model we have presented here is neu-
robiologically plausible in terms of the number of neurons, con-
nectivity, and computational mechanisms required, it remains
to be seen whether such a system can self-organized or fine tune
itself with experience, beginning with only roughly appropriate
connections. A hint as to how this may be accomplished has
been described by Foldiak {1991), who has demonstrated how
a complex cell can learn translation invariancé using the objec-
tive function of “perceptual stability.”” In our model, perceptual
stability would be desired in IT, and the control neurons would
need to learn how to configure themselves to maintain a stable
percept as an attended object moves or changes size on the
retina. More generally, there is a clear need to devise learning
rules for networks with control-like structures, or three-way
interactions, rather than simple perceptron-type networks with
two-way interactions only,

Concluding remarks

In order for us to make sense of the visual world, the brain must
be capable of forming object representations that are invariant
with respect to the dramatic fuctuations ocecurring on the retina.
We have demonstrated how this feat may be accomplished by
model neural circuits that are largely consistent with our current
knowledge of neurophysiology and neurcanatomy. The model
suggests several experiments—such as measuring attentional
modulation of receptive field position and size, or measuring
the spatial resolution of the window of attention—that may not
have been obvicus otherwise. As these experiments are carried
out, the results will either help to increase our confidence in the
model, or will suggest where it is wrong and how it might be
revised. It is through this comébined process of computational
modeling and experimentation that we hope to understand how
visual attention and recognition are actually implemented in
the brain.

Appendix: Derivation of Autonomous Control
Dynamics

Blob search

The total energy functional we wish to minimize is

Emuu = Eblob + BEcnnsHﬁnla (Al)

where E,, and E,, ... are defined in Equations 5 and 6, and
4 is a constant determining the relative contribution of the con-
straint term. Letting c, follow the gradient of this functional, we
obtain '

@ —_ aEloul
di 7 de,
aE blob aE trRInt
= — o - Cons A2
T 5e, 73 ac, (A2)

where 7 is a constant determining the rate of gradient descent.

As it stands, ¢, is unbounded; hence E,,, and E____ .., will
also be unbounded and the network will not be guaranteed to
converge. We can ameliorate this problem by letting ¢, be a
monotonically increasing function of another analog variable,
u,, that actually follows the gradient. That is,

e = ot (A3)
du, _ _ O
i (Ad)
a(x) =[1 + exp(—-Ax)]". (A5)

This has the effect of limiting ¢, to the interval [0, 1], but since
we know a priori that the desired minimum of E;,, and E_qaamin
Hes in this range, the limitation does not present a problem.
Taking the derivative of E,, and E ... With respect to ¢,
vields :

A, ,
Go2= -3 3 6Ly, (a6)
Py
i —
—_Tcomswraiar _ T A7
ac, 2 wCh (AT
and so the dynamical equation for w, is thus
di !
Y ey D DG + 8 S Tec (A8)
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One remaining problem is that u, must be computed via purc

integration, which may cause implementation difficulties. We

can convert the integrator to a more biologically plansible leaky
integrator by adding to £, the term

E = Zf o~{c) dc. (A9)
k 0.5
The total energy functional is now defined as
E 1al = Ehlob + IBEconsxmmt + aElmk: (AEO)

where the counstant o determines the relative contribution of

E . [The effect of adding this term is discussed in Hopfield

(1984). It essentially pushes c, slightly away from 0 and 1.0,
depending on the value of @ and A.]
Taking the derivative of E,,, with respect to ¢, yields
aEluk

T 7 (All)

and so the final dynamical equation for ¢, is now

= J(“k)}
du.
@ + T uk— 112 E GTudr + 18 2 Tye,  (Al2)
where the time constant 7 is defined as {/na.
Recognition
Now the total energy functional is
Ea = Epem + BE nsivaios T 0 E s (Al3)

where £, is defined as in Equation 9. Note that Equation A13
is just the same as Equation A10, except with E,,, replaced by
E

mem *

Taking the derivative of E__,, with respect to ¢, yields

aEmem i
Leeo-ETvna o
i F
and so the new dynamical equation for ¢, is thus
= o), (Al5)

du,
TI'_I_ + rty, = "’JE E Vit + 93 E Tsc,.
J
Note that this result is just the same as Equation A12, with the
exception that G, is replaced with V.

(Al6)
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